Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biomedicines ; 11(2)2023 Feb 08.
Article in English | MEDLINE | ID: covidwho-2236905

ABSTRACT

Accurate and rapid identification of COVID-19 is critical for effective patient treatment and disease outcomes, as well as the prevention of SARS-CoV-2 transmission. Rapid antigen tests (RATs) for identifying SARS-CoV-2 are simpler, faster and less expensive than molecular assays. Any new product to be considered a medical device is subject to evaluation and data analysis to verify the in vitro diagnostic ability to achieve its intended purpose. Clinical validation of such a test is a prerequisite before clinical application. This study was a clinical validation on adult Europeans of GenBody COVID-19 Ag, nasal and nasopharyngeal RATs. A set of 103 positive and 301 negative from nose and nasopharynx samples confirmed by RT-qPCR were examined. The tests were safe to use and showed 100% specificity in both specimens, and high sensitivity of 94.17% (95%CI 87.75% to 97.83%) and 97.09% (95%CI 91.72% to 99.4%), respectively. The parameters were significantly better for samples with higher virus loads (the highest for CT ≤ 25). The GenBody COVID-19 Ag RATs are inexpensive (compared to RT-qPCR), reliable and rapid with high sensitivity and specificity, making them suitable for diagnosis and timely isolation and treatment of COVID-19 patients, contributing to the better control of virus spread.

2.
Adv Med Sci ; 67(2): 386-392, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2031074

ABSTRACT

PURPOSE: From April to September 2020, Poland was minimally affected by COVID-19 compared to other EU countries. We aimed to investigate the risks of false reverse transcription polymerase chain reaction (RT-PCR) results during the first wave (compared to later waves), that rises when cycle threshold (Ct) of positive result is close to limit of detection (LOD). MATERIALS/METHODS: We analyzed Ct values of SARS-CoV-2 positive RT-PCR results of 7726 patients in Poland from April-September 2020. SARS-CoV-2 positive RT-PCR results of 14,534 patients in the 2nd-3rd wave and 10,861 patients in the 4th-5th pandemic waves were used. Statistical analysis was based on one-way analysis of variance. To verify, 95% confidence intervals with Bonferroni correction were computed. Incidence of SARS-CoV-2 variants in Poland was analyzed using Whole Genome Sequencing from 923 (3.6%) patients. RESULTS: The mean Ct of RT-PCR positive test results analyzed ranged between 22.89 and 26.71 depending on the month of the results collection. The differences between months were significant (p â€‹< â€‹0.001). Differences in Ct were observed between age groups, with younger patients displaying higher Ct values, however, major trends over time were paralleled between age groups. CONCLUSIONS: The mean Ct of the tested RT-PCR positive test results was lower than 35 which is considered an upper borderline for reliable positive results of the assay. Therefore, most COVID-19 cases recorded in Poland from April to September 2020 were detected with minor risks of inaccuracy. Data from a single center exhibited greater consistency for both virus Ct level and SARS-CoV-2 virus variant identification.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , COVID-19/diagnosis , COVID-19/epidemiology , Reverse Transcriptase Polymerase Chain Reaction , Poland/epidemiology , Sensitivity and Specificity
3.
Ann Agric Environ Med ; 29(2): 185-189, 2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1912609

ABSTRACT

INTRODUCTION: In the twentieth century, fumigation became a very popular method of disinfection, although in the same century many agents used as fumigants were withdrawn for ecological reasons. Fogging (fumigation) is a relatively new disinfection technology using dry fog, which behaves more like a gas and easily fills the sanitized space, reaching all surfaces in the room. The undoubted advantage of fumigation is the possibility of disinfecting difficult to clean areas. Fumigation has become particularly important in the twenty-first century due to procedures related to combating and preventing the spread of the coronavirus that causes COVID-19. OBJECTIVE: The aim of this review article is to summarize the current state of knowledge in the field of fumigation on the basis of past results of original research, taking into account new trends and possibilities of its application. BRIEF DESCRIPTION OF THE STATE OF KNOWLEDGE: Due to the fact that fumigation is safe for apparatus, equipment, and electronics, while simultaneously enabling the highest possible bactericidal and virucidal levels, this method is widely used in various areas, both medical and non-medical. Fogging technology is used in the medical, pharmaceutical, and food industries, as well as in transportation, for air fumigation or surface disinfection in closed spaces, such as hospital and laboratory rooms, incubators, refrigerators, ships, trucks, railway containers, and aircraft, to name only a few. The most common fumigants are hydrogen peroxide and peracetic acid, and their mechanism of action is related to their oxidizing properties. SUMMARY: Hydrogen peroxide and peracetic acid are highly effective and non-toxic fumigants that can be safely used for fogging laboratory and medical equipment, pharmaceutical facilities, hospital rooms, and animal breeding rooms.


Subject(s)
COVID-19 , Peracetic Acid , Animals , COVID-19/prevention & control , Fumigation/methods , Hydrogen Peroxide/pharmacology , Peracetic Acid/pharmacology , Pharmaceutical Preparations
SELECTION OF CITATIONS
SEARCH DETAIL